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THIN OBLIQUE ATIRFOILS AT SUPERSONIC SPEED

By Robert T. Jones
SUMMARY

The well-known methods of thin-sirfoll theory have
been extended to oblique or swept-back airfoils of finite
aspect ratic moving at supersonic speeda. The cases con-
sidered thus fdr are symmetrical airfoils at zero 1lift
having plan forms bounded by straight lines. Because of
the conical form of the elementary flow fields the results
ure comparable in simpllicity to the results of the two-
dimensionsal thin-airfoil theory for subsonic speeds.

In the case of untapered &lrfoils swept back behind
the Mach cone the pressure distribution at the center
section is similar to that given by the Ackeret theory
for a straight airfoll. With increasing distance from
the center section the distribution approaches the form
given by the subsonlic-flow theory. The pressure drag 1is
concentrated chiefly at the center section and for long

wings a slight negative drag may appear on outboard ssec-
tions. :

INTRODUCTION

In reference 1 1t was polinted out that the wave drag
of an infinite cylindrical airfoil disappears when the
airfoil is yawed to an angle greater than the Mach angls.
This observation led to the conclusion that the drag of
& finite airfoil could he greatly reduced by the use of
sufficient sweepback. With such a swept-back wing the
wave drag would be assoclated with departures from the
ideal two-dimensional flow at the root or tip sections
and would thus be a function of the aspect ratio. The
present report extends the theory of reference 1 to take
sccount of these effects.
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The treatment is based on the theory of small dis-
turbances in & frictionless compressible fluid. The :
idealizad fluld and its equetions of motlon are identical
with those employed in acoustles in the theory of sound
waves of smell amplitude. The spplicetion of the theory
iz thus llmited to bodies having thin cross sections so
.hat the velocity of motion imparted to the fluild is small
reletive to the valoclty of sound and sco that the pres-
sure dlsturbances produced sre -amall relative to the

ambisnt vressure.

The adaptation of the sound-wave theory to the aero-
dynomics of moving bodies was suggsested many years &go
vy Prandtl. The theory was apvnlied by Ackeret (rafer-
ence 2) to thin airfolls noving at supersonic speed.
Ackeret's treatment 1z limlted, however, to infinitely
lone cylindrical ailrfolls moving transversaly. The
present theory may boe. consldered an extension of Ackeret's
thoory te take into account winge of finice span and wings
having tapered or swopt-back plan forms. In the casse ol
swept-back »lan forms ths results are markedly different
from thosc obtained by the Ackorst theory end approach

the v lues indicated in raforences 1 and 3.

In reference li Busemann describes a method for cal-
culating the supsrsonic £low ovaer bodles which produce a
conlecal pressure fisld. DBusemann chows that thc flow
around cores of clrecular cross sections as well as the
flow around the tip of a rectangular lifting surface
satisfies this condition. The fact that a groeat variety
of cthrees-~dimensional flows can be constructed by the
sunerposition of conical cnd cvlindricel flow fields
lecads to an zsscntial simplification of tho airfeoil

theory at supersgonics speeds. _

Yhe pressnt treatment dilffcrs from Busemann's in
that 1t i3 further limited to flat bodies, that is,
bedies which arz thin in both lonzitudinel and transversc
sections., This additional restriction leads to a much
simmler mathsmatical treatment snd one which is epnlicable
to a wide varliety of airfoll shapes. In a papor proescnted

baefore the Institute of Acronautlecsl Sciences—, Allon E.
Fuckett also treats symmetrical non-1lifting bodies.
Puckett!s method malies use of integral cxpressions corre-
sponding to tho veloclity wotential of plane-source distri-

bution.
3
“1lith Annual Mectine, New York, January 29, 1946.
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SYMBCTLS

flight velocity

Mach number

cocrdinates

point on X-axis

limit of integration
disturbance-velocity potential
disturbancse-velccity components

value of u at Xy

value of u for conjugete arrangement

iocal pressure

dynamic pressure (%pvz)

density of alr

Legendre functions

source-strength factor
differentiel opserator

dreg coefficlent

thickness of wing
slope of line source (absoclute value)

chord of wing

THE OBLITUE LINE SOURCE

The assumptions of small dlisturbances and a constant
velocity of sound throughout the fluld lead to the

3
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well-known llnearized equation for the velocity poten-
tiul @ (see reference 5)

1 - Mz)ﬂkx + By + Foz =0 (1)

The snalysis 1s simplified by introducing the coordinates

-

i
™

X1

Me - 1 ¥ > (2)

I

Y1

z7 =\jM2— 1z

Dropping the subscripts from the transformed coordinates
gives . .

Frx - g&y ~ fps = 0 (3)

According to the thin-alrfoil theory the pressures
on the transformed alrfoil are gmiven by

L=l L 2 (z~0)

m
V5T (L)

-

dz
end the slope of the airfoll surface;_a;__is equal to the
slope of the streamlines near the chord plane; that is,
&
dx

r

(z2—0)

I

<[ <=
Qrpe

N 4

&
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The elementary solution of equation (3) for & point
source 1is :

1

o2

This solution 1s directly related to the subsonic poten-
tial

P =

p’o-.: 1

Vx2 + 32 + 22

In the subsonic case the equipotentlal surfaces are, however,
ellipsoids, whereas in the supersonic case the equipo-
tential surfaces are hyperbolcids limited by the Mach

cone., (See reference 5 for the derivation of these ele-
mentary solutions.)

Because of the linearity of egquation (1) & solution
may be used to denote one of the velocity components
rather than the velocity potential. The specification
of one component in this manner actually describes the
whole flow field since the other components may be obtalned
bv integsrating the glven componsnt to obtaln the velocity
potential and then differentiating the results along the
desired directlions to obtain the desired components.

This procedure is especially useful in the thin-airfoil
theory, where the complete veloclty field may not be
required.

Adopting the foregoing procedure, one may write

uO= 1 n
sz - g2 - z2

Since wu is proportional to the pressure, such a solution
corresponds to & point source in the pressure field. The
solution for an oblique line source may be obtained by
integrating for the effect of & row of point sources along
the line y =mx. It will be shown that such a line sourcse
satlsfies the boundary condition for a thin wedge-shape

- 5
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body. This solution, as well as other expressions relating

to oblique airfoills, can be most convenlently expressed
by referring to the oblique cocordinates

X' = X - nmny

il

Yl‘

z' = ql - mé z

(See fig. 1.) It may be shown that if any function
£f(x, vy, 2) 18 a solution of

y - mx

fxx - fyy = £35 = 0

then f(x', y', 2') 1s ualso & solution. In particular,
the point-source solution becomes

1 1

» 1
Vx'z - y'a - z12 Vi - m? sz - y2 - z°

Hence the integratlon for the effect of an inclined line
of sources may be performed directly along the obligué
X'-axis; thus, for m< 1,0

}gt .
1l A&
u = I, £

£
»O V(xt_ é‘)z - S,-|2 — Z'Z

v 1
= T cosh™T - = ' ' (6)
H 12 4 512

7
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where &', 1is the pozition of the laat source whose lach
sone includes the point (x', y!', z!') and is given by

gtl g _x! - \‘y!a + Z‘2

When m amnwroasches 1.0 the sourcs line ap»orosches
coincidence with the liach cone, corresponding to a trans-
verse velocity component equal to the vzlocity of sound.

For values of m greater than 1.0 the integration
vields

R .
a = -Ticos~t — (7)

2 2
-:,—,'l 4+ =t

Tt will be seen that iIn this case I 1s imaginary.

The vertical velocity near 2z = 0, which determines
the shape of the boundary, may be determined by inte-
grating u with respect to x and then differentiating

the resulting velocity potential with resvect to z;
thus (see apmendix),

. 3
W o= 22 =-EL u dx
oz Oz
= e = \1 - a? (8)

if z—0 and yt <« 0. If F!' > 0, w=0. There is
thus a discontinuity 1n the vertical velocity of the
streamlines when they cross the line scurce at y! = 0.
For smell values of I/m this discontinuity in vertical
velocity agrees with the boundary condition for a siumple
wedge shape having a small wedge angle. (See fig. 2.)
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If the source strength I 1s held constant and m
1 allowed to approach zero, the wedge angle ultimately
becomes large. At m = 0 the line source actually
satisfles the boundary condition for the cilrcular cone
(reference 6), but it is found that the slope of the
conical boundary does not agree with the slope of the
streamlines near 2z = 0 and hence the theory no longer

holds. The condition %-&60 thus represents the transi-

tion from an oblidque airfoil to a body of revolution and
will be avolded in the present analysis by restricting
the formulas to fluat bodiles, that 1ls, airfoils that are
thin in both longltudinal and transverse sectilon.

ATRFOIL OF WEDGE SECTION

Over the wedge section nsar the plane 2z = 0, the
Tormula (6) becomes simply

'
q = I cosh™t ~F— (9)
by
where |y! denotes the ubsolute magnitude of y!' = y - mx

The pressure 1s thus constant along the radial lines

= (Constant (10)

<

end is conveniently represented by the variation along a
line parallel to the x-axls. Figure Z shows the oblique
wedge-shape figure corresponding to a line scurce with

m< 1.0, In this case the press&re field i1s confined to
the interior of the Mach cone
and the theory, unllke the Ackeret theory, indicates a
stagnation point along the leading edge. (actually, of

course, the thin-sirfoll theory shows an infinlte velocity
at such polnts, but this is to be lnterpreted as & velocity

of the order of magnitude of the flight velocity V. The
pressure to be expected along the leading edge 1s the
stagnstion pressure corresponding to the transverse
veloclty component.)

- yd..z _xlz_ytz_zlaz

0
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Given 2 =¥ 1o wodge angle measured in down-

ax v’
stroam sections, the source strength must very with m
according to

Y __m gz
I = o (1)

(from equation 7). Then

%?- =282 _m cosh~1 XL (12)

If m exceeds 1.0, the leading edge of the slirfoll
will lie outside the Mach econe. In this case

cOos

dz m
ix‘r”*““' r“—‘-—‘”
m2 - 1. . yl’z + Z!2

A _ 1
o = b (13)

2

In the region between the leadling edge and the Mach cone

sos—=1 x: 13 constant and equal to 1TW; hence the pres-

sure in this region is constant, that is,

%=z%~ﬁ—— (1)

Figure 3 illustrates this result.

S
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If m—peo &a semi-infinlte alrfoll with its leading
edge at right angles to the direction of flight 1s
obtained; here

O3 = — (15)

\I(y -mx)2 + (1 - m2)z2 x2 - z2

and %F = 2§§ wherever 7y > an - 22, This value sgrees
with the Ackeret theory.

ATRFOILS BOUNDED BY PLANE SURFACES

The distribution of pressure over symmetrical air-
folls bounded by plane surfaces can be obtalned by super-
Imovosing the pressure filslds for several line sources and
slnks. Thls superposltion 1s greatly simplifled by the
conical form of the pressure fleld for eeach single line
source. Because of this form the whole distribution in
the plane 2z = 0 1s, in effect, represented by a single
curve., I the velocity field for e line source beglinning
at the origin (equation (6)) is denoted by u and that

beginning at x = -1 1is denoted by u_;, and so forth,
the sum

u_l - u+l

represents the veloclty over a plate of uniform thlckness
having a beveled leading edge of constant width. (See
fig. 4.} Similarly

.y - 2u + uyjy

represents the pressure field for an alirfoil having
diamond~shape cross sectlons.

The superposition required for several sources or
sinks can be accomplished by manipulation of « single
curve if it 1s remembered thut u 1s a function of the
ratio x/y. Figure l illustrates this process for a
source and a sink. In terms of the ratlio x/y the
gseparation of source and sink and hence the scsle of the
chord length continually diminishes with increasing
distance from the root section.

10
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1.9

At large distances from the vertex (x'-—w) %the
exorassion (for m < 1.0)

LI S xt - 1 .
Uy - Uy o cosh™+ 75;—~—~— - cosh~t — _— — (16)
7' - m| Iyt + m|
is found to approach the wvalue
' - m . ! -
logh':&lo% (17)

where Qg 1s the Legendre function (ses reference 6).

In the thin-z2irfoll theory for subsonic speeds it
can be shown that if

w T Pp(x)

oy 92 18
v (1E)

then
u <, (x) (19)

since Neumann's formula (reference 7, p. 116)

+1 P (&)
G = % r ek AL 2R P (20)

may be Interpreted as the integration for the velocity
distribution due to an array of sources of strength

wdg = Pp(E) dg

11
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elong the chord of the airfoll. The expression i-Tlo(y‘/m)
of equation (17) thus represents the subsonic pressure
distributlion over the bevelsd adge.2

At the root section (y = 0) only the forward source

need be considered since the airfoll surface 1s ahead or
the Mach cone originating at the rear source. IHere

X+ 1 - my

1w
U_q = U,q cc cosh™= —
-1 +1 vy -m (x + 1)]

-1 1
o cosh™ = (21)

and the pressure cver the root section is thus constant,
a3 given by the Ackeret theory, bul is altercd In magnitude
»y the obliqulty.

The obllque wing 1ying behind the Mach lines thus
cshows the Ackeret type of pressure distribution over the
foremost section and a progressive change alonn the soan
from this distribution to the subsonic type of distri-
bution. Since the subsonlec type of distribution shows
no pressure drag, there is a contlnuous falling orf of
the pressurs drags with increasing distance from tho roct
section. The prassure drag of the obligue wingz thus arlses
shiefly on the foremosst section, and 1t follows that the
Jdrag cocfficient of the wing as a whole diminishes with
lncreasing aspect ratioc. Tt will be shown subsequently

2Similarly, if P,(&) dg 1s taken as the chordwlse
dAlstribution. of vortlcity,

ua Pp(x)
w a:Qn(K)

5

(2N

lael

The first of fthis serics of airfolls is the camber shsane
curved to sunport & uniform Load.

12
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that the effect of cutting the wing off along a line

¥ = Constant to oproduce a downatream tip causes a reduc-
tion of the pressure draeg on the adjacent sections, and
if the aspect ratio is sufficlently high, the pressure
drag in the region of the downstream tip may actually be
negative.

If the wing lies shead of the Mach lines (m > 1.0}
the Ackeret type of pressure distribution occurs and a
pressure drag arises over the whole length. 1In this case
both v and w are conatant over the beveled part at a
distance from the origin.

The treatment thus far applies to semi-infinite
cylindrical wings having rocot sectlons near the origin.
A complete swept-back wing may be obtained by the addi-
tion of a symmetrical or conjugate arrangement of scurce
lines below the x-axis. Values of u for this conjugate_
arrangement may be denoted by u. Flgures 2 and 3 show U
for s single inclined source and figure 5 shows calculated
pressure distributions at several ssctions along the snpan
for a complete swept-back airfoll having beveled sections.
The &addition of the conjugate source lines doubles the
pressure at the root sectlon, but thls lnterference effect
falls off rapidly along the span. It is noted that, as
in figure lj, the most significant change in pressure
distribution occurs along the expansion wave originating
at the tralling edge of the root section. Figure 6 shows
the variation in pressure drag along the span for this
airfoil obtained by integrating the chordwise components
of pressure at the different sections.

The addition of & reversed source-sink dilstribution
having its origin displaced to a point O, (see fig. 7)

will show the effect of cutting the wing off in a direc-
tion paersllel to the dlrection of flight. It will be
evident that the effect of such a tip 1s characterized
by the subtraction of the curves u and is limited to
the ares lying within the Kuach cone which originates at
the tip. It is intercesting to note that pressure distri-
butions of the Ackeret type, except reversed in sign,

are added necar the tip; hence, cotting the tip off in
this manner reduces the drag of adjacent sectlions.

Tigure 8 shows the pressure distributions over a
rectangular airfoil having a leadling edge at right angles

15
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t2 the flow., In the trlangular area ahead of the Mach
cones origlnating at the tips the pressure is constant,
a3 ziven by the Ackeret theory, whereas behind these Mach
congs the pressure drops sharply.

AIRFOIL OF BICONVEX SECTIONS

Curved surfaces require a continuous distribution
of sources and sinks alined wilith the zenerators of the
surfsce. RFach elementury scurce-line causes an infini-
tesimal change 1n direction of the surface and hence the
slope at any point may be obtalned by adding up the
effscts of all sources shead of that polnt. Thus

X .
dz -1 Vi - m2 a1
== | To— e (22)

or

For airfoils of constant chord, m will be a constant
and the integrations can be performed without difficulty.
The simplest case 18 that of constant curvature, which
loads to profiles formed from circular arcs. .

In order to obtaln a biconvex proflle 1t 1s necessary
to introduce finlte sources of strength sufficient to form
the desired angle of intersection of the arcs at the
leading and trailing edges, btogether with a uniform dis-
tribution of sinks along the chord line between the two
sources., These proflles thus require a uniform dlstri-
bution of sources or sinks, which may be obtained by
Integrating the elementary solution for the line source

(equation (6)}). The vesulting solution may be denoted

by %u end is, for m < 1,
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nx ’
lo=T]| cosnlS™™ _4r_ ¢ (1- v cosh~l Z- Ly cosh‘l—l— (23)
D jy-ngj m vl o= v,

ui¥i

Inasmuch as the elementary solution u 1s of the
form f(?) the lntegreted solution appears in the form

%u =y x s(%)

and will be conveniently represented by a curve typlcal
of a2l1l spanwise stations, namely,

!4

& -
1

B

M
S

For a closed profile intersecting the X-axis at the
points 1 there is obtained

Zu = u-l -+ Uy - ¥ (’;’LD -1 - leu+> (2)4-)

This superpcsition may be accompllished conveniently by

transposing and adding the tynicsal curvea u and gsu,

as shown in figure 9.
It will be found that if m is less than 1.0 the
veloclty distribution approaches, with increasing distance

from the root section, the form glven by the subsonic-flow
theory for an airfoil of biconvex section, that is,

-

> (25)
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At the root scction, however, the form is simply that
given by ths Ackeret thsory fTor & straight airfoil,
alshough the values are reduced in mapnitude by the

factor — cosh™+ &-
p Y
1l -~ m<

The pressura diztribution and the variation of drag
elong the span for the symmetrical hiconvex wing are shewn
in figures 10 and 11,

CGNICAL SURFACES

For tapered alrfoils both m and T will be
functicns of &. (See equstion (21).) It is easily seen
that closed surfeces can e obtalned only on the condl-
tion that the llnes sourcas heave a common »oint cf inter-
czetian, as in flgure 7. If this neint is denoted by
Zos Jo

The surface obtained 1s one generatsd by & line passing
ihrough the fixed point x5, Yo end hencs is e conlcal

surfacs.

The pressure over the tepered airfoil requires the -
integretion of

]:"Tf X - c;' -
u = f cosh~t — m‘(x nm;)‘ %E ag
J& L _ g
1%-F
= ug -d-l:. -4
N ag =

16
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In conclusion it should be noted that ths pressures
have bteen derived for an airfoil transformed according
to equations (2). The pressures at corresponding points
of the gpig‘j_nn'l 2irPaoil are £to bhe obtailned by r?{v-?f:H-no-

el IR e 'J—“.J—J-LEJ
by M2 - 1.

Lanaley Memorial Acrronautical Lsboratory
National Advisory Cormittee for Aeronautics
Lengley #icid, Va,, May 23, 1946
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APPENDIX

MVALUATION OF IWTEGRAI OF E7UATION (&

For m < 1.0 the disturbance is zero outside the

liech ccne and the range of integration should be extended
only from =x; = qye + 22 to x, thet is,
V32 : tx . .t
u dx = _ cosh=3 = ax (A1)
2 \l 2
o 4 22 -y-l 4 ZTE
(for unit source strength). Furthernore,
X 1 X
o _ ou ..
— n dx = — dx (A2)
&z . oz
JYy<+ z¢ - UVYZ + 27
since ths Integrand is zero at the lower limit.
How
. . t -xtz Y1 - ;2
2 gosh™t x = A = (AZ)
Oz \Iysz + zt2 (.yt?. + 212) V}:r2 - 1;,-[2 - 312
end hernce the intepral
nx 3
L L . I
W I dx (al)

must

- ' - :
Vv2 + 22 (Y'E + 312) \/}:'2 - y12 W ozt2

he evaluated.

18
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First it is noted that the integrel vanishes
with =z except in the neighborhocd of the Mach cone

(Vxr2 - y12 - z12 = 0) und in the neighborhood of the

line source (y! = 0). Near the Mach cone gi12 + 77 ~—+x’2,
so theat : ..
~x'tzt dx ' -z dx
/ ; f ; (&45)
J ('y‘!z- 4+ Z'Z) VXIZ - ylz - ZIZ J x! Vx_z - -yz - ZZ'

Since the latter integral avproaches zero with 2z, there
18 no contribution to equation (&lt) in the region of the
Mach cone. On the other hand, near the line source y'——0

and Vxﬁz - ytz - z12 —>x'; hence, as z!'—30,

- — 1 1
X'z x — z dx=1-::l- tan~1 Z—'+ Constant (A6)
(y12+z12) vxr.’—_’_ytE_zre yl2+ z'2

The value of the integral changes from 0 to ®w in crossing
over tho line cource at ¥'=Q and is positlve or negatlve
depending on whether 2' aporoaches zero from the posi-

tive or negative slde of the xy plane. Hence

w = iz Jl -~ m2
m

If m 1is greater than 1.0

w = cos~% X (A7)

19
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and the flow disturbance extends outside the Mach cone

to & reglon bounded by rlans waves sxtending from the line
source and tangent to the Mach cone. (See fig. 12. } Tha
squation of these planes can b3 casily shown o be

y'g + z12 = 0; hence for m > 1.0 the lower limit of
integratlion 1s glven by

‘yfe o4 Z’Z = 0

- 12"‘1_:
= L 4 z (AB)

x7

’ n

Then

wt

a
Vxg Xy Vy' + zt2

dx (A9)

In this case u does not go te zero at the lower limitb
but 1s eogual to w. 1In all other reglons, howover,

the integral approaches zZerc uniformly with 2 as in the
rreceding case; hence

[

S Ox
W o= e— v dx = vy 1t = % U e - 1 (Al10)
'5 bz m

23 beflore.
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Figure 4.— Superposition of source and sink to obtain
plate with beveled edge.
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Figure 7. — Addition of reversed source-sink
distribution to produce tip.
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Figure 10.— Pressure distribution af
dif ferent poir_lts along span. Biconvex wing.
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Figure 12.- Evaluation of equation (A8) for m > 1.0.



